If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1484=16t^2
We move all terms to the left:
1484-(16t^2)=0
a = -16; b = 0; c = +1484;
Δ = b2-4ac
Δ = 02-4·(-16)·1484
Δ = 94976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{94976}=\sqrt{256*371}=\sqrt{256}*\sqrt{371}=16\sqrt{371}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{371}}{2*-16}=\frac{0-16\sqrt{371}}{-32} =-\frac{16\sqrt{371}}{-32} =-\frac{\sqrt{371}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{371}}{2*-16}=\frac{0+16\sqrt{371}}{-32} =\frac{16\sqrt{371}}{-32} =\frac{\sqrt{371}}{-2} $
| 2=c−80/6 | | -2(2x+5)+4=34 | | 25=-7+4(a+5) | | c-105=-2c-9 | | p+15=23 | | -13p=-104 | | (4/7)z+8=20 | | -4+3x=15 | | 64*a=57 | | -7a-6=a+162 | | 8x-4=-2x-14 | | 2r+9=7 | | 4c+3=26 | | ½(6t–4)=3t-4 | | x-56.4=12 | | p-336=-6p-7 | | 3s=19;s=-6 | | 39x=33x−30 | | -30x5x=120 | | -6b+5=b+215 | | 4x-8=24-2x | | 6x+5=3x–19 | | z+105=-5z+9 | | 2-1/3x(15-3x)=9 | | -3/2x-5/6=-4/9 | | 7=j+16/9 | | 4x–2=x+14 | | a+56=-a-6 | | (5x+17)+(17x-41)=180 | | 4+20=−3x+8x−11+5 | | 92=8m+12 | | (-3,4)m=32 |